ertex Inside Circle-Two Secants (Case 2)

VOU WILL NEED no special tools

TARLE PROOF

As you justify each entry of the table for the general case, you are also proving a theorem.

 ∠AVC is an exterior angle of △ADV. What is the relationship between the measure of ∠AVC and the measures of ∠1 and ∠2?

2. Copy and complete the following table:

mÂC	mBD	m∠1	m_2	m∠AVC	m∠DVB
160°	40°	80°	20°	100°	100°
180°	70°	?	?	?	?
200°	60°	?	?	?	?
X,°	X,°	?	?	?	?

Two secants

3. Based on your results, complete the theorem below.

Theorem

CHECKPOINT V

The measure of an angle formed by two secants or chords that intersect in the interior of a circle is ? the ? of the measures of the arcs intercepted by the angle and its vertical angle. 942

activities 3

Vertex Outside Circle—Two Secants (Case 3b)

1. ∠1 is an exterior angle of △BVC. What is the relationship between the measure of ∠1 and the measures of ∠2 and ∠AVC?

2. Copy and complete the following table:

mBD	mÂC	m∠1	m/2	m∠AVC
200°	40°	100°	20°	80°
250°	60°	?	?	?
100°	50°	?	?	7
X,º	X,°	7	?	7

3. Based on your results, complete the theorem below.

Theorem

CHECKPOINT V

TABLE PROOF

As you justify each entry of the table for the general case, you are also proving a theorem.

> The measure of an angle formed by two secants that intersect in the exterior of a circle is ? the ? of the measures of the intercepted 943

You will explore cases 3a and 3c in Exercises 27-37.