In this Activity, you will examine three configurations of secant-tangent angles.

1. The secant-tangent angle is a right angle.

(The secant contains the center of the circle.)

$$m\angle AVC = ?$$
 $m\overrightarrow{AV} = ?$

How does this relationship compare with the one between an inscribed angle and its intercepted arc? Copy and complete the following table:

2. The secant-tangent angle is acute.

∠AVC is a right angle.

TABLE PROOFS

As you justify each entry of the table for the general case, you are also proving a theorem.

mÂV	m∠1	m/2	m∠PVC	m/AVC
120°	120°	30°	7	60°
100°	7	?	7	?
80°	?	?	?	?
Xº	7	7	7	7

and tangent ZAVC is an acute angle

CHECKPOINT V

CHECKPOINT V

Complete the following statement:

The measure of an acute secant-tangent angle with its vertex on a circle is ? the measure of its intercepted arc.

3. The secant-tangent angle is obtuse. Copy and complete the following table:

mÂXV	m∠1	m_2	m∠PVC	m∠AVC
200°	160°	10°	?	100°
220°	?	?	?	?
240°	?	?	?	?
	-	-		

xº ? ? ? ? AVC is an obtuse angle.

CHECKPOINT V

Complete the following statement:

The measure of an obtuse secant-tangent angle with its vertex on a circle is ? the measure of its intercepted arc.

CHECKPOINT V

4. Based on your results, complete the following theorem:

Theorem

If a tangent and a secant (or a chord) intersect on a circle at the point of tangency, then the measure of the angle formed is ? the measure of its intercepted arc.